skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuvarega, Alex T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electrochemical detection of two pharmaceuticals, diclofenac (DCF) and carbamazepine (CBZ), was investigated as an oxidation current using boron‐doped nanocrystalline diamond (BDD) thin‐film electrodes. Both voltammetry and flow injection analysis with amperometric detection (FIA‐EC) were used to measure the drugs in standard solutions and a urine simulant. The oxidation potential for DCF wasca. 0.7 V vs. Ag/AgCl (3 M KCl) in 0.1 M phosphate buffer (pH 7.2) and wasca. 1.2 V for CBZ in 0.1 M perchloric acid. The DCF oxidation reaction was diffusion controlled at the detection potential with evidence of some surface fouling by reaction products. The CBZ oxidation reaction was also controlled by diffusion at the detection potential, but with no surface fouling. The voltammetric peak currents for both drugs increased linearly with the concentration in the micromolar range (r2≥0.994). FIA‐EC analysis of DCF and CBZ revealed a linear dynamic range from at least 0.1 to 100 μM with the actual minimum concentration detectable (S/N=3) being less than the lowest concentration measured. The recovery percentage for DCF in the urine simulant ranged from 94–108% and from 97–100% for CBZ, both assessed using square wave voltammetry. FIA‐EC data revealed that the BDD electrodes offer excellent intra and inter‐electrode repeatability with an RSD for DCF and CBZ of 4.90% and 3.81%, respectively. The BDD electrode provided good reproducibility and response stability over eight days of continuous use detecting both DCF and CBZ. Overall, BDD electrodes are a viable material  for the sensitive, selective, and reproducible electrochemical detection of these two pharmaceuticals. 
    more » « less